Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase.
نویسندگان
چکیده
1. A detailed study of cytochrome c oxidase activity with Keilin-Hartree particles and purified beef heart enzyme, at low ionic strength and low cytochrome c concentrations, showed biphasic kinetics with apparent Km1 = 5 x 10(-8) M, and apparent Km2 = 0.35 to 1.0 x 10(-6) M. Direct binding studies with purified oxidase, phospholipid-containing as well as phospholiptaining aid-depleted, demonstrated two sites of interaction of cytochrome c with the enzyme, with KD1 less than or equal to 10(-7) M, and KD2 = 10(-6) M. 2. The maximal velocities as low ionic strength increased with pH and were highest above ph 7.5. 3. The presence and properties of the low apparent Km phase of the kinetics were strongly dependent on the nature and concentration of the anions in the medium. The multivalent anions, phosphate, ADP, and ATP, greatly decreased the proportion of this phase and similarly decreased the amount of high affinity cytochrome c-cytochrome oxidase complex formed. The order of effectiveness was ATP greater than ADP greater than P1 and since phosphate binds to cytochrome c more strongly than the nucleotides, it is concluded that the inhibition resulted from anion interaction with the oxidase. 4mat low concentrations bakers' yeast iso-1, bakers' yeast iso-1, horse, and Euglena cytochromes c at high concentrations all attained the same maximal velocity. The different proportions of low apparent Km phase in the kinetic patterns of these cytochromes c correlated with the amounts of high affinity complex formed with purified cytochrome c oxidase. 5. The apparent Km for cytochrome c activity in the succinate-cytochrome c reductase system of Keilin-Hartree particles was identical with that obtained with the oxidase (5 x 10(-8) M), suggesting the same site serves both reactions. 6. It is concluded that the observed kinetics result from two catalytically active sites on the cytochrome c oxidase protein of different affinities for cytochrome c. The high affinity binding of cytochrome c to the mitochondrial membrane is provided by the oxidase and at this site cytochrome c can be reduced by cytochrome c1. Physiological concentrations of ATP decrease the affinity of this binding to the point that interaction of cytochrome c with numerous mitochondrial pholpholipid sites can competitively remove cytochrome c from the oxidase. It is suggested that this effect of ATP represents a possible mechanism for the control of electron flow to the oxidase.
منابع مشابه
EFFECT OF CROSSLINKING ON MITOCHONDRIAL CYTOCHROME c OXIDASE
Purified and reconstituted cytpchrome ~oxidase and mitochondria were crosslinked with biimidates in the presence and absence of cytochrome c. These experiments indicate that oxidase subunit interactions are required for activity and that cytochrome~ mobility may be required for electron transport activity. Biimidate treatment of purified and reconstituted oxidase crosslinks all of the oxidase p...
متن کاملComparison of Mitochondrial-Related Transcriptional Levels of mitochondrial transcription factor A, Nuclear respiratory factor 1 and cytochrome c oxidase subunit 1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation
Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women wit...
متن کاملMapping of yeast cytochrome c oxidase by fluorescence resonance energy transfer. Distances between subunit II, heme a, and cytochrome c bound to subunit III.
Fluorescence resonance energy transfer was used for measuring the distances between the following three sites of purified yeast cytochrome c oxidase: (a) a highly reactive sulfhydryl group on the mitochondrially made Subunit II; (b) endogenous heme a; (c) cytochrome c bound to the mitochondrially made Subunit III. Subunit II of purified cytochrome c oxidase was stoichiometrically and covalently...
متن کاملComplex formation and electron transfer between mitochondrial cytochrome c and flavocytochrome c552 from Chromatium vinosum.
Flavocytochrome c552 from Chromatium vinosum catalyzes the oxidation of sulfide to sulfur using a soluble c-type cytochrome as an electron acceptor. Mitochondrial cytochrome c forms a stable complex with flavocytochrome c552 and may function as an alternative electron acceptor in vitro. The recognition site for flavocytochrome c552 on equine cytochrome c has been deduced by differential chemica...
متن کاملDirect Regulation of Cytochrome c Oxidase by Calcium Ions
Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed previously to determine the kinetics and equilibrium characteristics of the binding. However, no effect of Ca(2+) on the functional characteristics of cytochrome oxidase was reve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 4 شماره
صفحات -
تاریخ انتشار 1976